Grants Search Results

Need help? Call us at (888) 899-2253

Interested in applying for a St. Baldrick's Foundation grant? Learn more about the grant application process.

Showing 421-440 of 2390 results

Lukas Chavez Ph.D.

Researcher Photo

Funded: 07-01-2020 through 11-15-2023
Funding Type: St. Baldrick's Scholar
Institution Location: La Jolla, CA
Institution: Sanford-Burnham Medical Research Institute

Based on progress to date, Dr. Chavez was awarded a new grant in 2022 to fund an additional year of this Scholar grant. Researchers have found that some very aggressive cancers produce extra pieces of DNA that are located outside of our 23 chromosomes and form circles. This is why we call them circular extrachromosomal DNA, or ecDNA. These ecDNAs are thought to be a fundamental driver of cancer growth. However, very little is known about ecDNA in childhood brain tumors. This is why researchers have now looked for ecDNA in medulloblastoma- a cancerous brain tumor that starts in the lower back part of the brain, called the cerebellum. Medulloblastoma can occur at any age, but most often occurs in young children. Though medulloblastoma is rare, it's the most common cancerous brain tumor in children. And indeed, we have observed that there are very specific types of ecDNA in medulloblastoma tumors, especially in those tumors that are very aggressive and difficult to treat. As the Hannah's Heroes St. Baldrick's Scholar, Dr. Chavez would like to learn more about ecDNAs in medulloblastoma and hopes that this will lead to a scientific revolution in how some of the most difficult-to-treat childhood brain tumors are understood and treated.

This grant is named for Hannah’s Heroes, a Hero Fund established to honor Hannah Meeson. At age six she was diagnosed with anaplastic medulloblastoma. After a relapse and several additional months of treatment, Hannah currently shows no evidence of disease. Throughout her treatments, Hannah never complained and remained positive and happy. This fund pays tribute to her fight by raising awareness and funding for all childhood cancers because kids like Hannah “are worth fighting for.”

This grant was awarded at the University of California, San Diego, and transferred to Sanford Burnham Medical Research Institute.

Challice Bonifant M.D., Ph.D.

Researcher Photo

Funded: 07-01-2020 through 06-30-2024
Funding Type: St. Baldrick's Scholar
Institution Location: Baltimore, MD
Institution: Johns Hopkins University School of Medicine affiliated with Johns Hopkins Children's Center

Based on progress to date, Dr. Bonifant was awarded a new grant in 2022 and 2023 to fund an additional year of this Scholar grant. There is a clear need for new treatment options for pediatric relapsed or refractory acute leukemia. Patients receiving standard chemotherapy regimens continue to suffer a poor prognosis. Immunotherapy has the potential to fulfill this need through its precise tumor targeting and novel anticancer biology. Recently, a type of immune cell, the T cell, has been genetically modified to specifically recognize leukemia cells through a specialized receptor (CAR). Infusion of CAR-T cells has shown stunning anti-leukemia activity in clinical trials. However, this approach has key limitations. Importantly, CAR-T cell persistence in each patient is critical to ensure continued disease remission. Alterations in leukemia surface protein expression have also been reported as a mode of CAR-T evasion. These may lead to disease relapse. Dr. Bonifant and her colleagues believe they can introduce new elements to existing chimeric receptors to promote improved CAR-T survival. They also believe they can alter these cells to target more than one surface antigen -- to prevent antigen loss and CAR-T escape, while enhancing specific disease targeting. The overall rationale for this proposal is the confidence in CAR-T cells as a powerful addition to anti-leukemia therapy. Dr. Bonifant would like to facilitate continued improvement of this therapeutic modality in order to ultimately attain durable cures.

The 2021, 2022, and 2023 portions of this grant are funded by and named for Emily Beazley's Kures for Kids Fund, a St. Baldrick's Hero Fund. At the age of 8, Emily was diagnosed with Stage III T-cell lymphoblastic non-Hodgkin’s lymphoma and battled through three relapses. Her family prayed for a miracle but discovered Emily herself was the miracle, inspiring a community to come together to show love and change lives. She had a dream of starting a foundation to fund research and named it “Kures for Kids”. Today, Emily's family and friends carry on her dream and her mission in her memory.

The 2020 portion of this grant is funded by and named for the Rally for Ryan Fund, a St. Baldrick's Hero Fund. Ryan was diagnosed with high risk ALL when he was seven years old. He endured 3 ½ years of often harsh treatments with smiles, laughter and a brave acceptance that this was his fight to win. And Ryan did prevail—he took his last chemo pill in January 2016 but relapsed at the end of the year. He endured CAR T-cell therapy and a bone marrow transplant and is once again cancer-free. This fund honors Ryan’s commitment to help make a difference for kids with cancer.

Kelsey Bertrand M.B.B.S.

Researcher Photo

Funded: 07-01-2020 through 06-30-2025
Funding Type: St. Baldrick's Scholar
Institution Location: Memphis, TN
Institution: St. Jude Children's Research Hospital

Based on progress to date, Dr. Bertrand was awarded a new grant in 2022, 2023, and 2024 to fund an additional year of this Scholar grant. Ependymoma is an aggressive pediatric brain tumor that is treated with surgery and radiation, but is resistant to chemotherapy. Ependymoma can be divided into different groups by location and biology. One type of ependymoma is driven by a fusion cancer-causing protein RELA-fusion. There are currently zero available drug therapies that target this protein, and we have a poor understanding of its function in cancer. Dr. Bertrand's research seeks to understand how this protein induces cancer in cells and models so that we can devise new treatments.

The 2024 portion of this grant is funded by and named for Hannah’s Heroes, a St. Baldrick's Hero Fund established to honor Hannah Meeson. At age six she was diagnosed with anaplastic medulloblastoma. After a relapse and several additional months of treatment, Hannah currently shows no evidence of disease. Throughout her treatments, Hannah never complained and remained positive and happy. This fund pays tribute to her fight by raising awareness and funding for all childhood cancers because kids like Hannah “are worth fighting for.”

Awarded at Baylor College of Medicine and transferred to St. Jude Children's Research Hospital.

Prasanna Ananth M.D

Researcher Photo

Funded: 07-01-2020 through 06-30-2024
Funding Type: St. Baldrick's Scholar
Institution Location: New Haven, CT
Institution: Yale University affiliated with Yale-New Haven Children's Hospital

Although rates of cure for childhood cancer have greatly improved in recent years, thousands of children continue to suffer from advanced, incurable cancer. Healthcare professionals bear a responsibility to ensure that the care of children with advanced cancer meets the goals and wishes of patients and their families. However, we do not know whether we fulfill this aim in pediatric cancer care. Dr. Ananth's prior research reveals intensive healthcare use near the end of life for children with advanced, incurable cancer. This includes lengthy stays in the intensive care unit and common use of interventions like breathing tubes. Yet, healthcare professionals worry that intense care toward the end of life for children with cancer may increase child and family suffering. In adults with cancer, quality measures have been developed to evaluate where care is most intense, or poor quality. This has consequently allowed researchers to develop interventions to improve the quality of care for adults with incurable cancer. Unfortunately, there are no comparable measures or standards for what constitutes good, or high quality, end-of-life care for children with cancer. Dr. Ananth seeks to address this problem. The overall objectives of this research are to (1) refine a list of potential measures of high quality end of life for children with cancer, and (2) develop an innovative questionnaire to systematically evaluate whether patients are receiving high quality end-of-life care. She hopes that, through this work that is distinctly family-centered, she can develop interventions to enable healthcare teams to provide optimal, compassionate care for children who have incurable cancer.

Paul Northcott Ph.D.

Researcher Photo

Funded: 07-01-2020 through 06-30-2023
Funding Type: Robert J. Arceci Innovation Award
Institution Location: Memphis, TN
Institution: St. Jude Children's Research Hospital

For the past 15 years, Dr. Northcott has devoted his entire scientific training and early independent career to studying the biological basis of medulloblastoma in large collections of patient tumors. From these efforts, his research has demonstrated that medulloblastoma is not a single disease, but rather a collection of different diseases referred to as subgroups, each of which is associated with distinct genetics, distinct age of onset, and distinct survival patterns. These findings have begun to directly impact how children afflicted with medulloblastoma are diagnosed and treated in the clinic. Currently, his lab consists of a team of basic scientists, computational biologists, and support staff that work collaboratively to understand fundamental questions related to the biological and clinical aspects of the different medulloblastoma subgroups. Leading a scientific program focused on medulloblastoma at St. Jude, Dr. Northcott has the privilege of being part of a collaborative research environment that facilitates working alongside pediatric neuro-oncologist’s leading world class clinical trials, allowing them to combine their expertise to determine why some children survive medulloblastoma and others do not. This group is currently pioneering and implementing innovative technical approaches to study extensive collections of medulloblastoma patient samples at the level of individual genes in single cancer cells. Information gained from these studies enables researchers to accurately model the different medulloblastoma subgroups in the lab and test new therapies before they are evaluated in clinical trials. Overall, his goal is to continue to make transformative discoveries related to the molecular, biological, and clinical characteristics of medulloblastoma subgroups that will improve treatments and outcomes for affected children and their families. The St. Baldrick's Robert J. Arceci Innovation Award is given in honor of the late Dr. Robert Arceci. A pioneer in the field, this award reflects Dr. Arceci's values including creativity, collaboration, and commitment to early- to mid-career scientists.

Jeremy Rubinstein M.D., Ph.D.

Researcher Photo

Funded: 07-01-2020 through 06-30-2022
Funding Type: St. Baldrick's Fellow
Institution Location: Cincinnati, OH
Institution: Cincinnati Children's Hospital Medical Center affiliated with University of Cincinnati College of Medicine

Bone marrow transplantation is a highly effective treatment for relapsed and difficult to treat forms of pediatric leukemia, but unfortunately has a high risk for dangerous side effects. Viral infections are a major problem in the weeks and months after bone marrow transplant while children's immune systems are still immature. These infections can be debilitating and even deadly while also being very difficult to treat since available antiviral medications frequently do not work. Over the last few years, researchers have had great success in combating these viral infections by taking T-cells (a type of infection fighting cell that is part of the immune system) donated by children's personalized stem cell donors and engineering them to attack and kill certain viruses. Additionally, the rates of side effects using this therapy have been incredibly low. Dr. Rubinstein now intends to offer this therapy as a preventative measure, with the hope that this strategy will decrease the number of patients suffering from dangerous viral infections after bone marrow transplant. This clinical trial has the potential to decrease the number of pediatric cancer survivors who die from infection while also shortening hospitalizations and decreasing the need for other anti-viral medications.

This grant is generously supported by the Rally for Ryan Fund, a St. Baldrick's Hero Fund. Ryan was diagnosed with ALL when he was 7 years old and began treatment immediately. Initially labeled “high risk” due to a poor response, he completed 3½ years of a difficult treatment protocol before relapsing 11 months later. After his third relapse and an unsuccessful immunotherapy trial, Ryan had a bone marrow transplant in December 2020. He is currently fighting graft vs. host disease but is doing well and is optimistic for a good response. The Campanaros created this Hero Fund to celebrate Ryan’s courageous spirit and knowing firsthand the importance of research, to raise funds to find better treatments for kids with cancer.

Zachary Reitman M.D., Ph.D.

Researcher Photo

Funded: 07-01-2020 through 06-30-2023
Funding Type: St. Baldrick's Fellow
Institution Location: Durham, NC
Institution: Duke University Medical Center affiliated with Duke Children's Hospital & Health Center

Based on progress to date, Dr. Reitman was awarded a new grant in 2022 to fund an additional year of this Fellow award. Brainstem gliomas are deadly brain tumors that affect children. The only effective treatment is radiation therapy, but despite this treatment all children with this disease eventually experience growth of the tumor and eventually death. As the Emily Beazley's Kures for Kids Fund St. Baldrick's Fellow, Dr. Reitman will test if treatments that enhance the efficacy of radiation therapy can improve survival in the laboratory. This could lead to new clinical trials aimed at helping children with brainstem gliomas to survive longer.

This grant is funded by and named for Emily Beazley's Kures for Kids Fund. At the age of 8, Emily was diagnosed with Stage III T-cell lymphoblastic non-Hodgkin’s lymphoma and battled through three relapses. Her family prayed for a miracle but discovered Emily herself was the miracle, inspiring a community to come together to show love and change lives. She had a dream of starting a foundation to fund research and named it “Kures for Kids”. Today, Emily's family and friends carry on her dream and her mission in her memory.

Lei Peng M.D.

Researcher Photo

Funded: 07-01-2020 through 06-30-2022
Funding Type: St. Baldrick's Fellow
Institution Location: Baltimore, MD
Institution: Johns Hopkins University School of Medicine affiliated with Johns Hopkins Children's Center

Over-expression of HOXA9 protein in acute leukemias, which are cancers of the blood, is associated with worse outcomes. This over-expression occurs in more than 50% of acute myeloid leukemia (AML) cases and in approximately 75% of infant acute lymphoblastic leukemia (ALL) cases. In the laboratory setting, decreasing the level of HOXA9 in AML cells has been shown to reduce their growth. This project aims to develop a way to target HOXA9 in AML and infant ALL using short segments of DNA called oligonucleotides designed to decrease HOXA9 protein or prevent its function. The use of oligonucleotides as drugs has recently been successful in the treatment of various disorders. The goal of these studies is to eventually lead to the use of oligonucleotides as novel therapeutic agents in a clinical trial setting for treatment of AML and infant ALL.

Anya Levinson M.D.

Researcher Photo

Funded: 07-01-2020 through 06-30-2022
Funding Type: St. Baldrick's Fellow
Institution Location: San Francisco, CA
Institution: University of California, San Francisco affiliated with UCSF Benioff Children's Hospital

Leukemia is the most common form of childhood cancer. While most children with leukemia can be cured, patients whose leukemia comes back after an initial response to therapy are very difficult to treat and often die of their disease. As the Ty Louis Campbell Foundation St. Baldrick's Fellow, Dr. Levinson studies one of the classes of medicines used to treat leukemia called "glucocorticoids" (a type of steroid), in a type of leukemia called T-cell ALL. Though glucocorticoids are usually very good at killing leukemia cells, some patients have been found to not respond (or be "resistant") to glucocorticoids, while others develop resistance over time, making their disease far more difficult to treat. Dr. Levinson's research is focused on understanding how and why such resistance develops in an effort to identify ways to overcome it and, ultimately, increase the percentage of children with T-cell ALL who can survive their disease.

This grant is funded by and named for the Ty Louis Campbell Foundation, a St. Baldrick's partner, created in memory of Ty Louis Campbell who lost his battle with brain cancer at the age of five. The Foundation seeks less toxic, more effective treatments that are specifically designed for children fighting cancer. Their ultimate mission is to help fund the intelligence and technology that will uncover new ways to cure children with cancer.

Stephanie Dixon M.D.

Researcher Photo

Funded: 07-01-2020 through 06-30-2022
Funding Type: St. Baldrick's Fellow
Institution Location: Memphis, TN
Institution: St. Jude Children's Research Hospital

Most children diagnosed with cancer today will survive but will develop late complications of their cancer treatment. Childhood cancer survivors have almost twice the risk of diabetes compared to other adults. Diabetes is known to increase the risk of heart disease among survivors, and heart disease is the leading cause of non-cancer death among survivors. Prediabetes is easily diagnosed and begins months to years before diabetes. However, little is known about prediabetes risk-factors and prevention in survivors, despite reports that up to 1 in 3 survivors have prediabetes. Using treatment information and recent assessment of over 3,500 adult survivors of childhood cancer, this research will identify the extent of prediabetes among survivors, characterize what cancer-treatments increase risk, and determine how quickly these survivors develop diabetes. Research will then establish if a medication and lifestyle intervention to prevent diabetes in prediabetic survivors is safe and achievable. This will inform a future diabetes intervention trial with the goal of improving long-term survival and quality of life for childhood cancer survivors.

Shannon Conneely M.D.

Researcher Photo

Funded: 07-01-2020 through 06-30-2023
Funding Type: St. Baldrick's Fellow
Institution Location: Houston, TX
Institution: Baylor College of Medicine affiliated with Vannie E. Cook Jr. Children's Cancer and Hematology Clinic, Texas Children's Hospital

Based on progress to date, Dr. Conneely was awarded a new grant in 2022 to fund an additional year of this Fellow award. Acute myeloid leukemia (AML) is the second most common blood cancer in children and is difficult to cure. About one quarter of children with AML have a form of the disease called core binding factor (CBF) AML. Despite intense therapy, cancer will come back in one out of three children with CBF-AML. We want to find new ways to treat this common form of AML by learning how the specific combination of mutations in the cancer cells affect their ability to grow and survive. Some patients with CBF-AML have unique mutations that can stop cells from correctly fixing damage, allowing them to grow too quickly. The project will study how these mutations contribute to CBF-AML cells' development, growth, and survival, affecting the cancer cells' ability to grow using cancer cells with these unique mutations. This will help in understanding how this type of AML develops, and may lead to new ways to treat children with this disease.

This grant is generously supported by Double Deckers Destroy AML, a St. Baldrick's Hero Fund. Joel and Seth were not only identical twins but best friends. In an ironic twist of fate, both boys were diagnosed with Acute Myeloid Leukemia just three months apart. With the overlapping diagnoses and treatments, the family was separated for months at a time and looked forward to days when they could be together at home. Joel and Seth both received bone marrow transplants and endured complications from the procedures. Sadly, both boys relapsed. Surrounded by their loving family, Joel died in November 2017 at the age of three, followed by Seth in May, 2019 when he was four years old. The twins were named as 2020 Ambassadors for St. Baldrick's so their story can continue to inspire many. The Double Deckers Destroy AML Hero Fund was established because the Decker family strongly believes more research is needed for AML, especially when the disease has relapsed. They want to support research so other families won’t have to say goodbye too soon.

Erica Braverman M.D.

Researcher Photo

Funded: 07-01-2020 through 03-31-2023
Funding Type: St. Baldrick's Fellow
Institution Location: Pittsburgh, PA
Institution: Children's Hospital of Pittsburgh affiliated with University of Pittsburgh

There are new cancer therapies in which a patient's own immune system is retrained to fight against their cancer. In one of these therapies, known as CAR-T cells, a patient's immune cells are removed from the bloodstream and reprogrammed to target and attack their cancer when the cells are returned to the body. While this therapy has shown great promise, there are still situations, especially with very high-risk cancers, where it does not work. One significant issue that exists with this treatment is that the retrained immune cells do not always stick around after being given back to the patient, which allows the cancer to outlast the therapy and come back. We know that once cancers have resisted a treatment once, it is difficult to use the same treatment again. This projects aims to find ways to alter tumor-targeting immune cells to make them last longer when they are given back to patients, ultimately allowing for a long-term cure for their cancer without the need for further treatment.

This grant is generously supported by the TeamConnor Childhood Cancer Foundation. TeamConnor Childhood Cancer Foundation's mission is to raise funds for national childhood cancer research programs, to build awareness that only a fraction of the NIH’s annual funding supports childhood cancer research, and to support inpatient programs. Founded in 2008 in honor and memory of Connor Cruse, TeamConnor has funded over $4M in pediatric cancer research grants across the United States.

University of Hawaii Summer Fellow

Researcher Photo

Funded: 07-01-2020 through 06-30-2021
Funding Type: St. Baldrick's Summer Fellow
Institution Location: Honolulu, HI
Institution: University of Hawaii Cancer Center

This grant funds an undergraduate student to complete work in pediatric oncology research for the summer. Raman spectroscopy (RS) is used to characterize different types of cancer tissue. Usually RS fingerprints are obtained when a slice of cancer tissue is examined under a microscope. With a new design as a portable hand-held RS probe, the St. Baldrick's Foundation Summer Fellow will use the probe to determine RS fingerprints in cancer cell cultures. If successful, the project results could be used to design uses of the probe in the clinic setting to detect cancer cells in blood or other fluids.

University of California, Davis Summer Fellow

Researcher Photo

Funded: 07-01-2020 through 09-30-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location: Sacramento, CA
Institution: University of California, Davis School of Medicine affiliated with UC Davis Children's Hospital

This grant funds a medical student to complete work in pediatric oncology research for the summer. JMML is a rare type of childhood cancer that is really hard to cure. Right now, even our best treatments only stop this cancer for a year or so before it starts to come back. Cancers can be studied in specific models, which allow researchers to try out different drugs and treatments to see what works. The goal of this project is to use these models to find new treatments for JMML. This grant is named for the St. Baldrick's Foundation Staff whose generous gifts have helped fund this opportunity and may encourage students to choose childhood cancer research as a specialty.

Fred Hutchinson Cancer Research Center Summer Fellow

Researcher Photo

Funded: 06-15-2020 through 09-14-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location: Seattle, WA
Institution: Fred Hutchinson Cancer Research Center affiliated with University of Washington, Seattle Children's Hospital

This grant funds a student to complete work in pediatric oncology research for the summer. There has been little success in curing high risk AML patients, with survival rates remaining at < 25%. This highlights our current reliance on highly intensive cytotoxic therapies and stem cell transplant, and their inadequacies. This project studies the combination of novel target discovery with state-of-the-art stem cell expansion technology. Protein science provides a unique opportunity to generate one of the most impactful therapeutic discoveries in childhood AML in the last 40 years, with minimal toxicity. The summer intern will assist in investigating the impact of drugs on cancer targets while minimizing toxicity toward healthy cells. Results will be used to help identify critical genes involved in cancer growth and disease resistance, and to leverage future work in drug development.

University of California, San Diego Summer Fellow

Researcher Photo

Funded: 06-01-2020 through 08-31-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location: San Diego, CA
Institution: University of California, San Diego affiliated with Rady Children's Hospital San Diego

This grant funds an undergraduate student to complete work in pediatric oncology research for the summer. Children with aggressive neuroblastoma have poor cure rates despite intensive treatment, and new therapies are needed. Treatments that inhibit important proteins and pathways in neuroblastoma tumors are likely to be more effective with fewer side effects. Kinases are proteins that control signals in cancer cells, leading to cancer cell growth and spread. This study proposes to test a certain inhibitor to determine its effectiveness against neuroblastoma cells and tumors. The results of these studies will determine whether BLU-667 is effective against neuroblastoma, potentially leading to clinical trials using BLU-667 for treatment of children with neuroblastoma.

The Children's Hospital of Philadelphia Summer Fellow

Researcher Photo

Funded: 06-01-2020 through 09-30-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location: Philadelphia, PA
Institution: The Children's Hospital of Philadelphia affiliated with University of Pennsylvania

This grant funds an undergraduate student to complete work in pediatric oncology research for the summer. Children diagnosed with leukemia are often effectively treated in the beginning, but later relapse with their disease. Scientists now feel that this is in part due to the sanctuary that the bone marrow (BM) provides the leukemia cells. This prevents complete elimination and can set children up for relapse. This study aims to understand how the BM protects leukemia cells. Once we have identified the mechanisms by which that happens we can then begin to develop drugs to prevent it. This lab has recently identified an inflammatory process by which leukemia cells change the BM function and think this is a root cause of disease persistence and relapse. The project will test this hypothesis and find out how to prevent the leukemia from changing the BM and causing relapse.

Children's Cancer Therapy Development Institute Summer Fellow

Funded: 06-01-2020 through 08-31-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location: Beaverton, OR
Institution: Children's Cancer Therapy Development Institute

This grant funds an undergraduate student to complete work in pediatric oncology research for the summer. This project will validate a drug for the medulloblastoma, a type of brain tumor, specifically tumors that spread from the original cerebellar location to the covering of the brain and spine (the meninges). This grant is named for the St. Baldrick's Foundation Staff whose generous gifts have helped fund this opportunity and may encourage students to choose childhood cancer research as a specialty.

The Pennsylvania State University Summer Fellow

Researcher Photo

Funded: 06-01-2020 through 05-31-2021
Funding Type: St. Baldrick's Summer Fellow
Institution Location: Hershey, PA
Institution: Pennsylvania State University affiliated with Penn State Hershey Children's Hospital

This grant funds an undergraduate student and medical student to complete work in pediatric oncology research for the summer. T-cell acute lymphoblastic leukemia is a deadly childhood cancer that affects blood cells. The current treatment uses highly toxic medications. The goal of the proposed project is to test the efficacy of a novel, less toxic, targeted treatment for T-cell acute lymphoblastic leukemia. This award will train the student to perform experiments to test the efficacy of the novel treatment in T-cell leukemia and to determine the mechanisms of drug action against leukemia cells.

University of Colorado Summer Fellow

Funded: 05-26-2020 through 07-02-2020
Funding Type: St. Baldrick's Summer Fellow
Institution Location: Aurora, CO
Institution: Children's Hospital Colorado affiliated with University of Colorado

This grant funds a student to complete work in pediatric oncology research for the summer. This lab specializes in harnessing the power of a particular type of immune cells called macrophages and microglia which are the body's scavengers. This is done by blocking a "don't eat me" signal called CD47. The CD47 protein acts as a "don't eat me" signal to macrophages which normally engulf and devour cancer cells and other diseased and dying cells. It turns out that nearly every kind of cancer uses CD47 to evade these macrophages. Covering up the CD47 a "don't eat me" protein allows the immune cells to find and swallow cancer cells. Here we will test whether the ability of macrophages to eat tumor cells can be increased by blocking another immune dampening molecule called adenosine which is rapidly increased by tumor cells as they grow.