Showing 21-40 of 294 results
Michael Koldobskiy M.D., Ph.D.
Funded: 07-01-2017 through 06-30-2019
Funding Type: St. Baldrick's Fellow
Institution Location: Baltimore, MD
Institution: Johns Hopkins University School of Medicine affiliated with Johns Hopkins Children's Center

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Despite dramatic improvements in treatment outcome in recent decades, relapsed and resistant disease remains a leading cause of childhood death from cancer. Dr. Koldobskiy studies the ways in which leukemia cells rely on "epigenetic" modifications, or chemical marks that modify the expression of genes without a change in the genetic sequence itself. Variability of epigenetic marks allows leukemia cells flexibility in turning genes on and off, and may account for resistance to treatment. By dissecting the mechanisms of epigenetic modification in childhood ALL, he aims to identify new targets for treatment.

Sriram Venneti M.D., Ph.D.
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: Ann Arbor, MI
Institution: University of Michigan affiliated with C.S. Mott Children’s Hospital

Diffuse intrinsic pontine gliomas (DIPG) are lethal pediatric brain tumors with no treatments. In order to develop cures we need to understand their biology. Cancers survive on fuel to generate energy to support their uncontrolled proliferation. One of the fundamental nutrients that drive the energy production is the amino acid glutamine. How glutamine is taken up and metabolized by DIPG tumor cells is not know. Further it is not known if inhibiting cancer cells from taking up and metabolizing this fuel is therapeutic. To address this significant gap in our knowledge, Dr. Venneti is studying glutamine metabolism in DIPG cancer cells and evaluating inhibition of glutamine metabolism as a potential therapeutic strategy. This grant is made with generous support from the McKenna Claire Foundation established by the Wetzel family in memory of their daughter, McKenna. Their mission is to cure pediatric brain cancer by raising awareness, increasing community involvement and funding research.

Patrick Grohar M.D., Ph.D.
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: Grand Rapids, MI
Institution: Van Andel Research Institute affiliated with Helen Devos Children's Hospital, Spectrum Health Hospitals

The goal of this study is to develop new therapies for Ewing sarcoma by targeting a protein called EWS-FLI1. Many people believe that the key to improving outcomes for Ewing sarcoma patients is to develop new drugs that block EWS-FLI1. In order for this to be successful, there is a need to understand exactly what happens to the Ewing sarcoma cell when EWS-FLI1 is turned off. Dr. Grohar is using the latest technology to both characterize the consequence of EWS-FLI1 silencing and identify novel compounds that turn EWS-FLI1 off.

David Kirsch M.D., Ph.D.
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: Durham, NC
Institution: Duke University Medical Center affiliated with Duke Children's Hospital & Health Center

Diffuse intrinsic pontine glioma, also referred to as brainstem glioma, is a pediatric cancer that accounts for the majority of deaths from brain tumors in children. Although radiation therapy is the standard of care for brainstem gliomas, the median survival of children with this tumor type is less than one year from diagnosis. In order to improve the treatment of these patients, Dr. Kirsch's team is using a model of brainstem glioma that can be used to evaluate the effectiveness of new therapies. Using this model, they are testing whether removing a protein called ATM, which is the target of drugs now entering clinical trials, will enhance radiation sensitivity in brainstem gliomas. They hypothesize that deleting this target, when given in combination with radiation therapy, will increase the number of tumor cells killed by radiation and will therefore improve survival in brainstem gliomas when they have a specific gene mutation commonly found in this childhood brain tumor. If successful, these studies will inform the design of future clinical trials testing this strategy in children with brainstem gliomas. This grant is named for Hannah’s Heroes, a St. Baldrick’s Hero Fund created in honor of Hannah Meeson and pays tribute to her fight by raising awareness and funding for all childhood cancers because kids like Hannah “are worth fighting for.”

Katherine Hyde Ph.D.
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: Omaha, NE
Institution: University of Nebraska affiliated with Children's Hospital & Medical Center, Nebraska

Acute myeloid leukemia (AML) is a cancer of the immature cells in the bone marrow. One common chromosomal abnormality found in pediatric AML is the inversion of chromosome 16 (inv(16)). Current treatments for inv(16) AML are associated with significant toxicity, as well as serious long-term chronic effects. Therefore, there is a pressing need to develop new, more targeted treatments for children with inv(16) AML. Inv(16) generates a fusion gene called CBFB-MYH11. CBFB-MYH11 causes changes in gene expression, which are the first step in the development of leukemia. Because Cbfb-MYH11 is expressed in all inv(16) leukemia cells, it makes an attractive drug target. Currently, there are no CBFB-MYH11 inhibitors suitable for use in humans. However, it is possible that other proteins cooperate with CBFB-MYH11, some of which may be better drug targets. One potential co-factor is HDAC1. Dr. Hyde's team found that HDAC1 binds CBFB-MYH11 and is required for its activity. They also found that an HDAC1 inhibitor significantly blocks the growth leukemia cells in culture. In this project, Dr. Hyde is testing whether HDAC1 is an important co-factor of CBFB-MYH11 and if HDAC inhibitors effectively target Cbfb-MYH11+ leukemia cells in vivo. These results will have direct clinical implications for children with inv(16) AML.

Brent Stockwell Ph.D.
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: New York, NY
Institution: Columbia University Medical Center affiliated with Morgan Stanley Children’s Hospital, New York-Presbyterian

Neuroblastoma is one of the most common childhood cancers. There are different subtypes of Neuroblastoma; some have a very poor prognosis for the patient. Dr. Stockwell's team has identified a new aggressive subtype of Neuroblastoma, called “mesenchymal”, and sought new therapies that can specifically target this subtype. Since genetic markers that can identify patients with the mesenchymal subtype are know, a selective therapy will have a greater chance of success in the clinic. They recently discovered that a common type of cholesterol-lowering drug, called statins, are potent and selective killers of mesenchymal neuroblastoma cells in the lab. There are many different statins, and now Dr. Stockwell is determining which is the most potent drug and exploring why the mesenchymal subtype is so sensitive to statins. He is also testing these drugs in models of the disease to show that statins are effective at killing mesenchymal neuroblastoma cells. Since these drugs have a documented safety profile in children and well-studied pharmacological activity, these drugs can be brought through preclinical testing relatively quickly and developed as novel therapies for this aggressive pediatric cancer.

LaQuita Jones D.O.
Funded: 07-01-2017 through 06-30-2019
Funding Type: St. Baldrick's Fellow
Institution Location: Cincinnati, OH
Institution: Cincinnati Children's Hospital Medical Center affiliated with University of Cincinnati College of Medicine

Patients with acute myeloid leukemia (AML) that is associated with a specific type of mutation in a protein called FLT3, have a poor prognosis. When these patients relapse, they have been found to have a unique mutation in this protein that makes their leukemia very difficult to treat. Dr. Jones is studying the effects of a novel FLT3 inhibitor in patients who have developed exquisitely resistant AML.

Guangheng Li M.D., Ph.D.
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: Beaverton, OR
Institution: Children's Cancer Therapy Development Institute

Rhabdomyosarcoma is a deadly cancer when spread through the body. With the Aiden's Army Fund St. Baldrick's Research Grant, Dr. Li is combining drugs already FDA approved for adult cancers in a way that stops rhabdomyosarcoma tumor cells from creating new tumors elsewhere in the body. This approach is unique because Dr. Li not only aims to stop the tumor cells from growing, but will try to convert what is left to non-cancerous cells similar to what is found in normal muscle. This grant is named for Aiden Binkley who was diagnosed with Stage IV rhabdomyosarcoma at age 8. This bright, funny and courageous little boy believed he got cancer so he could grow up to find a cure for it. His vision is being carried on by Aiden’s Army through the funding of research. They will march until there is a cure!

Monika Davare Ph.D.
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: Portland, OR
Institution: Oregon Health and Science University affiliated with Doernbecher Children's Hospital

Children with cancer continue to succumb to their disease, many after receiving toxic therapies like chemotherapy and radiation. Also, surviving children face life long negative health consequences ranging from learning disabilities, to more severe effects such as a higher chance of getting another cancer in adulthood. Therefore, additional, rigorous scientific research needs to be performed to develop new and effective treatment options for these kids. Cancer growing inside the body hides in plain sight of the immune system. This is because cancer cells evolve to escape recognition by the immune cells. Therefore reawakening the immune system could be a very effective way of using a patients' own attacker cells to engulf cancer cells and get rid of the disease. Dr. Davare is working to discover and test new ways to reactivate immune cells for attacking cancer cells. For this project, she has developed an innovative method to identify synthetic molecules that will uncloak the cancer cell and make it visible to the immune system for destruction. This research strategy, in the long run, will open new doors and has the potential to not only increase survival of children with cancer, but their long term quality of life as well. This grant is named for Hannah’s Heroes, a St. Baldrick’s Hero Fund created in honor of Hannah Meeson and pays tribute to her fight by raising awareness and funding for all childhood cancers because kids like Hannah “are worth fighting for.”

Chandrika Gowda M.D.
Funded: 07-01-2017 through 06-30-2020
Funding Type: St. Baldrick's Scholar
Institution Location: Hershey, PA
Institution: Pennsylvania State University affiliated with Penn State Hershey Children's Hospital

Children with high risk B-cell leukemia, especially with loss or dysfunction of IKZF1 gene have very poor outcomes and high relapse rate. Every other child who relapses with high risk leukemia dies from the disease and there has not been much advancement in treatment for this group for the last 30 years. Dr. Gowda and team have found that a cancer promoting protein called casein kinase II (CK2) impairs the important functions of a protein that helps prevent leukemia. Inhibiting the CK2 protein will restore the ability of this protein to function properly and prevent leukemia. Dr. Gowda's team is testing if using a drug that inhibits CK2 protein along with the drugs that already are known to work in leukemia will have stronger anti-leukemia effect and improve the outcome. Using two agents that target same gene or pathway via different mechanisms will ensure effective shutdown of the particular pathway resulting in strong therapeutic effect. This strategy would also help lower the doses of each drug used and reduce their side effects and associated toxicity.

Sarah Richman M.D., Ph.D.
Funded: 07-01-2017 through 06-30-2020
Funding Type: St. Baldrick's Scholar
Institution Location: Philadelphia, PA
Institution: The Children's Hospital of Philadelphia affiliated with University of Pennsylvania

The immune system not only fights infection, but can also fight cancer cells. Recently, doctors have been able to use patients’ own immune cells to help treat their cancer. These immune cells can also attack the patient's normal tissues, which is harmful. Dr. Richman is working to learn how normal tissues might be protected while still allowing the immune cells to effectively kill the cancer cells.

Andrei Thomas-Tikhonenko Ph.D.
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: Philadelphia, PA
Institution: The Children's Hospital of Philadelphia affiliated with University of Pennsylvania

All proteins in our bodies are made using assembly instructions contained in messenger RNAs, or mRNA. mRNA molecules themselves are constructed from building blocks called exons. When exons are joined together, or “spliced”, out of order, the resulting protein code is scrambled. This is what causes several types of leukemias in older adults. We have discovered that incorrect splicing also occurs with high frequency in childhood leukemias originating in antibody-producing B-cells. Dr. Thomas-Tikhonenko is testing two ideas. The first is that incorrect splicing is needed to sustain uncontrolled multiplication of leukemic cells. The second is that restoring proper exon assembly with specific drugs would slow down or block cancerous growth. If successful, these studies could pave the way to new clinical trials and improved survival of children with leukemia.

Gary Kohanbash Ph.D.
Funded: 07-01-2017 through 06-30-2020
Funding Type: St. Baldrick's Scholar
Institution Location: Pittsburgh, PA
Institution: Children's Hospital of Pittsburgh affiliated with University of Pittsburgh

Brain tumors are the leading cause of cancer-related deaths in children, and ependymomas are the third most common kind. Recent studies have shown that “educating” the patient’s own immune system to fight cancers – immunotherapy – can be safe and effective. Dr. Kohanbash's team has identified three peptides that might activate immune cells to specifically fight one of the more lethal types of ependymoma. Dr. Kohanbash is testing these peptides in the lab. He is also looking at how immunotherapy could help fight all six types of ependymoma that affect kids, and thus is studying relevant characteristics in the largest-ever series of pediatric ependymoma tumors as well as in ependymoma patients already participating in a clinical trial of a vaccine based on another peptide. This grant is generously supported by the Henry Cermak Fund for Pediatric Cancer Research which was created in memory of a brave boy who had an amazing spirit throughout his battle with a brain tumor. This fund is dedicated to Henry’s wish that “no one gets left out.”

Heather Wilson-Robles DVM
Funded: 07-01-2017 through 06-30-2018
Funding Type: Research Grant
Institution Location: College Station, TX
Institution: Texas A&M AgriLife Research

Cancer is a genetic disease in which a cell learns to take advantage of certain processes that allow that cell to grow and survive unchecked. Bone cancer is an aggressive disease in both children and pet dogs that can be painful and often leads to death of the patient even with aggressive surgery and chemotherapy. Most often these patients die because the tumor has spread to other areas of the body, not from the original bone tumor, which is often removed with surgery. Therefore, in order to better battle this disease, new therapies that target the cells that spread are needed. Preliminary work with a new drug that targets this process has shown promise as just such a therapy. The goal of The Ben's Green Drakkoman St. Baldrick's Research Grant is to more thoroughly investigate this drug for its ability to prevent or delay spread of the tumor cells using both human and dog bone tumor cells. This grant is named for the Ben's Green Drakkoman Fund, created to honor the memory of Ben Stowell who battled osteosarcoma with an inspiring determination to live life fully. The fund is named after a super hero Ben created named the Green Drakkoman who defeats his enemy, the Evil Alien.

David McFadden M.D., Ph.D
Funded: 07-01-2017 through 06-30-2020
Funding Type: St. Baldrick's Scholar
Institution Location: Dallas, TX
Institution: University of Texas Southwestern Medical Center at Dallas

The EWSR1-FLI1 family of cancer genes causes Ewing sarcoma. However, no drugs currently exist that specifically block the action of EWSR1-FLI1 to cause cancer cells to grow. The McFadden Lab has engineered a "self-destruct button" into the EWSR1-FLI1 gene in Ewing sarcoma cells cultured in the laboratory, and these cells stop growing when the EWSR1-FLI1 gene is turned off. Dr. McFadden is using this laboratory tool to identify proteins that work with EWSR1-FLI1, and identify other genes it controls to cause Ewing sarcoma cells to grow. These studies will help identify new ways to stop the growth of Ewing sarcoma cells.

Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium Member
Funded: 07-01-2017 through 06-30-2018
Funding Type: Consortium Research Grant
Institution Location: Dallas, TX
Institution: University of Texas Southwestern Medical Center at Dallas

This institution is a member of a research consortium which is being funded by St. Baldrick's: Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium. For a description of this project, see the consortium grant made to the lead institution: Baylor College of Medicine, Houston, TX.

Angelique Whitehurst Ph.D.
Funded: 07-01-2017 through 06-30-2019
Funding Type: Research Grant
Institution Location: Dallas, TX
Institution: University of Texas Southwestern Medical Center at Dallas

Cancer cells are hard to defeat because they are so similar to normal cells. Most current methods that kill cancer cells impose collateral damage on normal cells that lead to immune suppression, hair loss, and gastro-intestinal damage. Dr. Whitehurst's research focuses on identifying therapies that will only kill tumor cells but leave normal cells unharmed. Here, she is focused on a tumor type that impacts adolescents: Ewing Sarcoma. She has identified a pathway, called TNFa, which is “mis-wired” in these cancer cells. Instead of dying when this pathway is activated, the cancer cells keep growing. Importantly, she has identified inhibitors of the pathway that can kill these tumor cells. Dr. Whitehurst is working to understand how this pathway is mis-wired in cancer cells and the consequences of its inhibition. The end goal would be the identification of chemical inhibitors that could be used in the clinic as a less toxic and more effective treatment option.

Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium Member
Funded: 07-01-2017 through 06-30-2018
Funding Type: Consortium Research Grant
Institution Location: El Paso, TX
Institution: Texas Tech University Health Sciences Center - El Paso

This institution is a member of a research consortium which is being funded by St. Baldrick's: Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium. For a description of this project, see the consortium grant made to the lead institution: Baylor College of Medicine, Houston, TX.

Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium Member
Funded: 07-01-2017 through 06-30-2018
Funding Type: Consortium Research Grant
Institution Location: Ft. Worth, TX
Institution: Cook Children's Medical Center

This institution is a member of a research consortium which is being funded by St. Baldrick's: Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium. For a description of this project, see the consortium grant made to the lead institution: Baylor College of Medicine, Houston, TX.

Saurabh Agarwal Ph.D
Funded: 07-01-2017 through 06-30-2020
Funding Type: St. Baldrick's Scholar
Institution Location: Houston, TX
Institution: Baylor College of Medicine affiliated with Texas Children's Hospital, Vannie E. Cook Jr. Children's Cancer and Hematology Clinic

High-risk neuroblastoma is an aggressive cancer of very young children with less than 50% overall survival. Current therapy includes high-dose chemotherapy and radiation, which has long-term toxic side-effects. Despite these intensive therapies, neuroblastoma commonly relapse. This relapse is the primary cause of death from neuroblastoma due to disease spread, drug-resistance, and toxicity. As the David's Warriors St. Baldrick's Scholar, Dr. Agarwal is focusing her research on developing effective therapeutic approaches to target those tumor cells which escape initial treatment and regenerate drug-resistant disease. Recently, Dr. Agarwal's team discovered a chemotherapy-resistant, highly tumorigenic sub-population of cells in neuroblastoma tumors. These cells escape initial therapy and may cause aggressive, drug-resistant relapsed disease. Furthermore, they found that specific epigenetic enzymes maintain this cell sub-population by activating key genes. These epigenetic modifiers can be successfully targeted with novel epigenetic inhibitors, currently under pre-clinical trials. These exciting findings suggest a new epigenetic therapeutic approach for high-risk neuroblastoma. This grant supports efforts to uncover the mechanisms controlling neuroblastoma tumorigenicity and relapse, and develop an effective targeted approach for high-risk neuroblastoma. This grant honors the memory of David Heard who battled neuroblastoma and pays tribute to the amazing spirit with which he lived, embracing life until the very end.